If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x^2+20x+165=0
We add all the numbers together, and all the variables
-1x^2+20x+165=0
a = -1; b = 20; c = +165;
Δ = b2-4ac
Δ = 202-4·(-1)·165
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{265}}{2*-1}=\frac{-20-2\sqrt{265}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{265}}{2*-1}=\frac{-20+2\sqrt{265}}{-2} $
| 10x–8=32 | | 2s=s+46 | | x^2+20x+165=0 | | p-32=2p | | 2p=p-32 | | p=p+34 | | y=0.14+0.5(100) | | 3s+41=2s+55 | | 12r-2=46 | | 2^(n-1)=512 | | y=0.13+0.4(90) | | s=4s-87 | | 2s=5s-57 | | 10v=921 | | -3(x-10+20=20 | | (4x+2)=(2x-9) | | 7u-99=3u+9 | | 5(2x-4=2x+4 | | z+24=3z-26 | | 7w+5=3w-10 | | (20(0.5y)-5y)=0 | | 3c=2c+25 | | 2p=4p-38 | | 3z-42=z+4 | | 4s=8s-80 | | 5b+73=b+77 | | 11w-1=19w-25 | | 0=240-x-2x | | 2s=6s-40 | | 10x+9x=4x-9 | | u-6=3u-56 | | -8n+4(1+5n)=-6n-(14) |